The Nealon Equation |
y = (A*sin(B*x+C) + D*sin(E*x+F) + G*sin(H*x+I) + J*sin(K*x+L)) * (M + N*x + O*x^2 + P*x^3 + Q*x^4) * atan(R*x) * atan(S*(BL-x)) |
Gibson Les Paul |
y = (A*sin(B*x+C)+D*sin(E*x+F)+G*sin(H*x+I)+J*sin(K*x+L))*(M+N*x+O*x^2+P*x^3+Q*x^4)*atan(R*x)*atan(S*(17.275-x)) |
The two curves from the graphs put together. |
The drawing is of a 1959 flame top. |
y = (A*sin(B*x+C)+D*sin(E*x+F)+G*sin(H*x+I)+J*sin(K*x+L))*(M+N*x+O*x^2+P*x^3+Q*x^4)*(3-atan(R*x))*atan(S*(3.59-x)) |
Cutaway A modified equation is required for the cutaway. The first arctan term is subtracted from 3. |
Now the body twice, one mirror image of the other and the cutaway. All of this is done with the curves produced by the mathematical equation. I suppose it also could be done with the point series of data taken from the instrument, but what’s the fun in that? |
Length around the perimeter of the bass side of the Les Paul. |
|
Les Paul Body Outline |
|
A |
0.3661125 |
B |
-0.6542102 |
C |
-3.428853 |
D |
0.04257652 |
E |
-1.426924 |
F |
0.9901923 |
G |
4.458389 |
H |
0.07430593 |
I |
1.892568 |
J |
1.918956 |
K |
0.3106034 |
L |
-2.663953 |
M |
0.3029042 |
N |
0.2545602 |
O |
-0.0215465 |
P |
-0.0007298772 |
Q |
8.45777E-05 |
R |
24.62258 |
S |
23.2647 |
BL |
17.275 |
|
|
A B C D E F G H I J K L M N O P Q R S BL |
0.3661125 -0.6542102 -3.428853 0.04257652 -1.426924 0.9901923 4.458389 0.07430593 1.892568 1.918956 0.3106034 -2.663953 0.3029042 0.2545602 -0.0215465 -0.0007298772 8.45777E-05 24.62258 23.2647 17.275 |
|
|
A = 0.3661125 |
|
B = -0.6542102 |
|
C = -3.428853 |
|
D = 0.04257652 |
|
E = -1.426924 |
|
F = 0.9901923 |
|
G = 4.458389 |
|
H = 0.07430593 |
|
I = 1.892568 |
|
J = 1.918956 |
|
K = 0.3106034 |
|
L = -2.663953 |
|
M = 0.3029042 |
|
N = 0.2545602 |
|
O = -0.0215465 |
|
P = -0.0007298772 |
|
Q = 8.45777E-05 |
|
R = 24.62258 |
|
S = 23.2647 |
|
BL = 17.275 |
Les Paul Cutaway |
|
A |
0.002098982 |
B |
-6.793013 |
C |
1.691257 |
D |
3.204554 |
E |
-0.8213864 |
F |
1.118254 |
G |
2.366427 |
H |
-0.2342140 |
I |
0.29424849 |
J |
4.349017 |
K |
-0.7233598 |
L |
4.076135 |
M |
5.072948 |
N |
-11.91285 |
O |
12.03647 |
P |
-5.864441 |
Q |
1.146872 |
R |
16.64988 |
S |
98.20209 |
BL |
3.59 |
|
|
A B C D E F G H I J K L M N O P Q R S BL |
0.002098982 -6.793013 1.691257 3.204554 -0.8213864 1.118254 2.366427 -0.2342140 0.29424849 4.349017 -0.7233598 4.076135 5.072948 -11.91285 12.03647 -5.864441 1.146872 16.64988 98.20209 3.59 |
|
|
A = 0.002098982 |
|
B = -6.793013 |
|
C = 1.691257 |
|
D = 3.204554 |
|
E = -0.8213864 |
|
F = 1.118254 |
|
G = 2.366427 |
|
H = -0.2342140 |
|
I = 0.29424849 |
|
J = 4.349017 |
|
K = -0.7233598 |
|
L = 4.076135 |
|
M = 5.072948 |
|
N = -11.91285 |
|
O = 12.03647 |
|
P = -5.864441 |
|
Q = 1.146872 |
|
R = 16.64988 |
|
S = 98.20209 |
|
BL = 3.59 |